Rodent Models of Streptozotocin-Induced Diabetes as Suitable Paradigms for Studying Diabetic Kidney Disease
DOI:
https://doi.org/10.5530/fra.2024.1.5Keywords:
Diabetic kidney disease, diabetic nephropathy, animal models, streptozotocinAbstract
The purpose of this correspondence is to highlight the usefulness of Streptozotocin (STZ)-induced type 1 diabetes for studying Diabetic Kidney Disease (DKD) which is also known as diabetic nephropathy.1 DKD is a major microvascular complication of diabetes regardless of type 1 or type 2 diabetes. DKD is also a leading cause for the development of end stage renal failure.1 The main features of DKD is thickening of the glomerular basement membrane caused by accumulation of matric glycoproteins and collagens, resulting in increased albumin secretion and a decreased glomerular filtration rate. Read more. . .
Downloads
Metrics
References
Yan LJ. NADH/NAD(+) Redox Imbalance and Diabetic Kidney Disease. Biomolecules. 2021; 11(5)doi:10.3390/biom11050730
Lee SR, Lee HE, Yoo JY, et al. Nox4-SH3YL1 complex is involved in diabetic nephropathy. iScience. 2024;27(2):108868. doi:10.1016/j.isci.2024.108868
Giralt-Lopez A, Molina-Van den Bosch M, Vergara A, et al. Revisiting Experimental Models of Diabetic Nephropathy. Int J Mol Sci. 2020; 21(10)doi:10.3390/ijms21103587
Tesch GH, Allen TJ. Rodent models of streptozotocin-induced diabetic nephropathy. Nephrology (Carlton). 2007;12(3):261-6. doi:10.1111/j.1440-1797.2007.00796.x
Wu J, Yan LJ. Streptozotocin-induced type 1 diabetes in rodents as a model for studying mitochondrial mechanisms of diabetic beta cell glucotoxicity. Diabetes Metab Syndr Obes. 2015;8:181-8. doi:10.2147/DMSO.S82272
LeDoux SP, Woodley SE, Patton NJ, Wilson GL. Mechanisms of nitrosourea-induced beta-cell damage. Alterations in DNA. Diabetes. 1986;35(8):866-72. doi:10.2337/dia b.35.8.866
Szkudelski T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res. 2001;50(6):537-46.
Bouwens L, Rooman I. Regulation of pancreatic beta-cell mass. Physiol Rev. 2005;85(4):1255-70. doi:10.1152/physrev.00025.2004
Norgaard SA, Sondergaard H, Sorensen DB, Galsgaard ED, Hess C, Sand FW. Optimising streptozotocin dosing to minimise renal toxicity and impairment of stomach emptying in male 129/Sv mice. Lab Anim. 2020;54(4):341-52. doi:10.1177/ 0023677219872224
Al-Qabbaa SM, Qaboli SI, Alshammari TK, et al. Sitagliptin Mitigates Diabetic Nephropathy in a Rat Model of Streptozotocin-Induced Type 2 Diabetes: Possible Role of PTP1B/JAK-STAT Pathway. Int J Mol Sci. 2023; 24(7)doi:10.3390/ijms24076532
Nakai K, Umehara M, Minamida A, et al. Streptozotocin induces renal proximal tubular injury through p53 signaling activation. Sci Rep. 2023;13(1):8705. doi:10.10 38/s41598-023-35850-w
Alomari G, Al-Trad B, Hamdan S, et al. Alleviation of diabetic nephropathy by zinc oxide nanoparticles in streptozotocin-induced type 1 diabetes in rats. IET Nanobiotechnol. 2021;15(5):473-83. doi:10.1049/nbt2.12026
Wu J, Luo X, Yan LJ. Two dimensional blue native/SDS-PAGE to identify mitochondrial complex I subunits modified by 4-hydroxynonenal (HNE). Methods. Frontiers in Physiology. 2015-March-26 2015; 6doi: 10.3389/fphys.2015.00098
Zhou Q, Guo W, Jia Y, Xu J. Effect of 4-Phenylbutyric Acid and Tauroursodeoxycholic Acid on Magnesium and Calcium Metabolism in Streptozocin-Induced Type 1 Diabetic Mice. Biol Trace Elem Res. 2019;189(2):501-10. doi:10.1007/s12011-018- 1494-8
Song L, Feng S, Yu H, Shi S. Dexmedetomidine Protects Against Kidney Fibrosis in Diabetic Mice by Targeting miR-101-3p-Mediated EndMT. Dose Response. 2022;20(1):15593258221083486. doi:10.1177/15593258221083486
Qi XY, Peng GC, Han QT, et al. Phthalides from the rhizome of Ligusticum chuanxiong Hort. attenuate diabetic nephropathy in mice. J Ethnopharmacol. 2024; 319(Pt 2):117247. doi:10.1016/j.jep.2023.117247